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Abstract-Second-order boundary-layer effectsofdisplacement thickness, transverse curvature, wall slip and
temperature jump have been investigated in detail for flow past sharp cones of SO, 10° and 15° semi-vertex
angles. Similar solutions of the non-dimensional first- and second-order boundary-layer equations exist and
numerical solutions of the resulting systems of ordinary-differential equations have been obtained using the
finite-difference technique with variable step size. The second-order effects have been computed for different
values of Mach number, wall temperature, and injection parameter, Some of the first-order results for wall

heat transfer have been compared with the available experimental results at DFVLR.
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ratio of successive variable step sizes
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p density
PI>P2 ... functions in the inner expansion for P
PI' P2 .. : functions in the expressions for PI> P2 ...
(J Prandtl number

I. I:-;TRODUcrlO~

Tna FLOW around a pointed cone is one of the most
important in the study of aerodynamics of revolving
bodies and has great practical value. Hantzsche and
Wendt [1] have transformed the laminar boundary
layer equations for the supersonic flow past cones to the
equations for the flow past a flat plate and have
established relationships for boundary-layer thickness,
skin-Irjction coefficient and the rate of heat transfer for
the flows past cones and flat plates. Krasnov [2]
calculated skin friction and heat transfer for the
laminar boundary-layer flow past cones using the
integral form of the governing equations. Very recently
Krasil'schikov and Nosov [3] have studied experi
mentally some aerodynamic properties of cones in
viscous supersonic flow. In all these studies, the effects
of inviscid-viscous flow interaction, transverse curva
ture, wall slip and temperature jump at the surface have
not been taken into account. These effects assume
significance at high Mach numbers and in the presence
of blowing.

It is well known that the classical boundary-layer
theory is valid only when:

(a) the boundary-layer thickness is small in
comparison with a characteristic curvature dimension
of the body surface, and

(b) the rate of growth of the boundary-layer
thickness is small.

Under extreme conditions of fluid motion, par
ticularly in very high-speed flight at high altitude, the
boundary layer near a surface can become sufficiently
thick to materially affect the external flow.In turn, this
influences the forces and heat transfer at the wall. At the
same time and to the same order, roughly speaking,
other assumptions of the classical boundary-layer
theory begin to break down. Under these circumstances
it becomes necessary to take into account the effectsdue
to the boundary layer itself (displacement thickness
effect), non-uniformities in the external stream,
curvature of the surface, wallslipand temperaturejump
at the surface. The classical boundary-layer theory has
been extended to deal with these effects.This extension
of the classical boundary-layer theory has been termed
higher-order boundary-layer theory, an excellent
critical review of which was given by Van Dyke [4]. The
method of matched asymptotic expansions is
particularly useful in developing higher approxim
ations to the boundary-layer theory and Van Dyke has
worked out the second-order solutions for incom
pressible [5, 6] and compressible [7] flows. Higher
order boundary-layer theory has received considerable
attention from many authors, and a comprehensive

bibliography may be found in Van Dyke's review [4].
Some attempts have been made earlier to study the

effectsof displacement, curvature, slip and temperature
jump in 'the boundary-layer flow past sharp cones.

Probstein and Elliott [8] studied.. as a first-order
effect, the transverse curvature effect in compressible
axially-symmetric laminar boundary-layer flow and
found that for cones and cylinders with zero pressure
gradient the first-order correction to the Mangler
formulation shows that the effect on both the skin
friction coefficient and heat-transfer rate can become
appreciable when the ratio of the boundary-layer
thickness to the body radius has a value which is lessthan
or of the order of unity. At a constant value of this
parameter, the transverse curvature and displacement
effectsare increased in magnitude when either the ratio
of the wall to free-stream temperature or Mach number
is increased. All other conditions being equal, for the
same value of this parameter the skin-friction
coefficient and heat transfer increase on the cylinder is
greater than on the cone. Lewis et al. [9] have studied
mass transfer and first-order boundary-layer effectson
cones at supersonic and hypersonic conditions. They
found that the total drag increases due to the effects of
displacement, transverse curvature, slip, and tempera
ture jump. Mass transfer at the cone surface resulted in
drag reduction. Further, under certain conditions, the
effectsof velocity slip and temperaturejump were found
to be quite significant.

The present work deals with the detailed study of the
laminar boundary-layer flow past circular cones of 5°,
10°,and 15°semi-vertex angles at high Mach numbers.
We have employed the singular perturbation technique
to derive the non-dimensional boundary-layer
equations of the first- and second-order in a spheri
cal polar coordinate system with axial symmetry. The
first-order boundary-layer equations describe the
Prandtl boundary-layer flow while the second-order
boundary-layer equations deal with the effects of dis
placement thickness, transverse curvature, wall slip,
and temperature jump at the surface. We have con
sidered these effectsfor differentvalues ofthe wall to stag
nation temperature ratio. The effect of injection at
the cone surface has also been investigated.

Due to the linearity of the second-order boundary
layer equations, it is possible to study each second
order effect individually and thus determine their
relative importance. Tables [10, 11] have been used to
calculate the first-order outer inviscid conical flow.The
second-order inviscid flowequations have been used to
obtain relationships among the surface values of the
second-order flow variables. These quantities enter into
the second-order boundary-layer equations.

Similar solutions of the first- and second-order
boundary-layer equations are obtained and the
resulting sets of ordinary differential equations have
been solved numerically by finite-difference technique
with variable step size. The results are presented
graphically and in tabular form. Some of the results of
the first-order boundary-layer flow are found to be in
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good agreement with the available experimental results
at DFVLR, AVA, Gottingen.

the pressure in the boundary layer is independent of the
coordinate 0. In view of this it is permissible to assume

PII = constant = E, (5)
2. ANALYSIS

The equations of continuity, momentum, energy,
and state are rendered dimensionless by using the
characteristic length L (slant cone length), free-stream
velocity U 00' Poo U~ (twice the stagnation pressure),
U~/cp, JI(U~/cp), respectively, for the radial distance r
from the vertex of the cone, the velocitycomponents tI, v
in rand 0 directions, the pressure p, the temperature T
and the viscosity II. rand 0 are the coordinates of a point
in the flow-field in the spherical polar coordinate
system with axial symmetry. cp is the specific heat at
constant pressure. An ideal gas is assumed. cp and the
Prandtl number o = Jlcp/k are assumed constant. k is
the thermal conductivity of the fluid.

The entire flow-field between the shock and the cone
surface is divided into two regions:

(a) outer inviscid flow, and
(b) boundary layer close to the cone surface.

The coordinate 0 in the boundary layer is stretched
and the new coordinate 0 is defined by the relation

for viscosity.
The constant E can be assumed to be an average

constant in the boundary layer depending upon the
constant wall temperature T; and the constant
temperature r. at the edge of the first-order boundary
layer flow.Gersten et al.[13] have assumed PJI = Pwllw
= 1which amounts to regarding II as a linear function
of temperature if pressure across the boundary layer
does not vary. Mitome and Yasuhara [14] have
assumed

.!!.!!......=N
P...Jlw

and have regarded N as an average constant in the
boundary layer. N is taken to depend on the constant
temperatures at the waIl and the edge of the boundary
layer. We have assumed the following relationship for
E:

where a is the semi-vertex angle of the cone. The
singular perturbation parameter e is given by

e = [JI(U~/cp)/PooUooL]t/2. (2)

The equation of state is

We assume different perturbation series in the two
regions for the flow variables tI, v, p, P and T.

In addition to the equations of continuity,
momentum, energy, and state, a suitable viscosity law is
also assumed. The system of equations is to be solved
under the following boundary conditions on the cone
surface:

(
JI all)

tI = (e2adpw){[(y-l)/y]T
w} I/2 - ~O '

r 0 6=~

0= (O-a)/e

p = [(y-l)/y]pT.

(1)

(3)

where

SI = 110.4°K/[(y-l)M~Too]'

t: = TJ[(y-l)M~To].

Too is the dimensional free-stream temperature, 1; is the
dimensional stagnation temperature, To is the
dimensionless stagnation temperature, AI00 is the free
stream Mach number, andRe and r. are the first-order
outer inviscid flowdensity and temperature on the cone
surface, respectively.

This choice of E implies that the linear viscosity law
will give a better approximation to the more exact
Sutherland formula in the temperature range close to
the constant wall temperature [15].

In the following, we describe briefly the analysis in
the two regions of the flow.

v = w,,{r), (4) 2.1. Outer expansion
In the outer inviscid flow region, we assume

(6)

In the above equations y = cp/C., a 1 and C1 are
constants given by Street [12]. Equations (4) account
for the non-continuum effects of waIl slip and
temperature jump. The subscript w refers to the cone
surface and vw(r) is the variable velocity on the cone
surface in 0 direction. Vw > 0 gives injection and Vw < 0
means suction. In the present work, we have assumed
Vw > O.

In addition to the conditions given by equations (4),
we apply the usual Rankine-Hugoniot conditions at
the shock.

It will be shown in the latter part of the analysis that

with similar expansions for v, p, P and T.
On substituting these expansions in the -non

dimensional equations of continuity, momentum,
energy, and the equation of state (3) and equating the
coefficientsof eO and e1,we obtain the first- and second
order equations for the flow in the outer region. The
solution ofthe first-order conical flowisavailable in the
form of tables [10,11] and we have used these tables to
compute the surface values

U 1(0 = a) = U.. T1(O = a) = r.,P1(0 = a) = Pe,

R1(O = a) = R e•
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(13)

(15)

Momentum:

P.(1I.01l. +~ ~1I1) = E~(-.!... ~1I1) .
.or r 00 r 2 00 PI 00

Energy:

2.2. Inner expansion
The flow variables in the boundary-layer region are

expressed in the following manner:

u(r,O) = u.(r,0)+w2(r,0)+ . .. , (12)

with similarexpansions forv,p,p and T. From equation
(5), the viscosity JI can be expressed as

Vw
0= 0: II. = 0,v. = v".(r) = li2'

r

t l = T; = constant, (18)

Equation of state:

Pit I = (R IT.)8=2 = R;r. = constant = K*. (17)

Boundary conditions:

increases the pressure in the inviscid flow and this
implies that P2(iX) must be positive. In view of equations
(10) and (11),0 2(:X) and 7;(:x), respectively, are negative
and positive. The signs of 0 2(:X) and T2(:x) will determine
the nature of the displacement effecton skin friction and
heat transfer at the surface.

0-+ 00: III -+ 1I.,t l -+ 7'..

Vw is a constant quantity which is positive for injection
and negative for suction at the cone surface. We have
considered Vw > 0 only because the second-order
effects become increasingly significant at high Mach
numbers and in the presence of'blowing as stated in ref.
[15].

E [ pk,0) ]
JI. = PI(r,0) I-f:p l(r,0) + ... .

The first- and second-order boundary-layer equations
are obtained by substitutingequations (12)and (13)into
the full non-dimensional equations of continuity,
momentum, energy, and state and equating the
coefficients of [;0 and [;1. The corresponding boundary
conditions at the surface are obtained in a similar
manner from equations (4). The conditions at the
boundary-layer edge are obtained by using the
matching principle. Wc give below the complete sets of
the first- and second-order boundary-layer equations
along with the boundary and matching conditions.

First-order boundary-layer equations.
Continuity:

(9)

(8)

(7)

(11)

y-I
P, =--R.T..

y

From equation (10) we also have

7;(:x) = -U.U2(iX ).

These quantities appear in the first- and second-order
boundary-layer equations and the second-order outer
flow quantities on the cone surface.

The second-order inviscid flow equations admit a
solution of the form

It has been pointed out [9] that the displacement effect

V.(O = a) = 0,

(boundary condition for first-order flow)

(dV.+2U.) = 0,
dO 8=2

(dP.) = o.
dO 8=2

The second-order inviscid flow equations, when
written on the cone surface, give the following
relations:

On substituting (7) in the second-order inviscid flow
equations, we obtain a system of ordinary differential
equations for O2(0), ... , etc. This system of equations
must be solved numerically to determine the complete
solution of the second-order inviscid flow.

Our main interest here is to obtain the values of U 2'

... , etc. on the cone surface. This is done by writing
the second-order inviscid flow equations on the cone
surface and using the following first-order inviscid flow
relations on the cone surface:

1'-1
Pir,a) =--[Rir,a)T.(:x)

l'

+ R.(iX)T2(r, a)].

Making use of equations (7), we obtain from equation
(9)

P2(iX) = -RP.Oi:x) = R.'T2(iX)

y-l _ _
= -[R.T2(:x)+ T.R2(:x)]. (10)

y

We have, from the first-order inviscid equation of state,
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Second-order boundary-layerequations.
Continuity;

invariant with respect to 0 and thus we obtain

p,(r,0) = P,(O = IX) = P, = constant,

Pz(lX)
pz(r,0) = Pz(r,0 = IX) = ---ri2'

r

TC

D

Energy:

(
alz al, v, atz Vz at,)

p, ",-+"z-+--_-+--_-ar ar r 00 r 00

TC

As a consequence of this relation, we have

apz (apz) (auz)-= - = - R,U,--
ar ar 8=. cr 8=.

on using equation (9).
This confirms the statement made in writing

equation (5) for viscosity. We have made use of the
above expression for apz/ar and equations (14H17) in
writing equations (19H22). The terms on the RHS of
equations (19H23) with the letters D, TC, Sand TJ
below them account, respectively for the effects of
displacement, transverse curvature, wall slip, and
temperature jump. Equations (19H23) are linear and
this property has been used to study the contribution of
each second-order effectseparately. This has been done
by splitting the functions uz, vz, Pz and tz in the
following manner:

with similar expressions for other functions . This
approach has been used by Van Dyke [7].

2.3. Similar solutions of first- and second-order
boundary-layerequations

We transform (r, 0) domain to (~,II) by applying the
following transformations:

D TC
r0

~ = r, '1= - = r,/z0r'/z . (24)

To further simplify the mathematical analysis, a new
variable iiis introduced. The relation between IIand tlis

Equation of state:

D

(22)

II= f: pieS) ds. (25)

Boundary conditions:
!

0 = 0 '. _[Ea'(Y-O'/Zt, all,]
IIz- '/Z -0 'p,p,y r G - 9=0

S

The dependent variables are written as

where

V, = p{'I~' +ii,) and Vz = p{'I~Z +iiz}

U Ze and Iiein equations (27)are constants and have the

(27)

(26)

In terms of new variable 'I,we write
(23)

D D

TJ

oz(~) Tz(lX)
o -+ 00: liz-+~, t z -+---ri2'

r r

Fhe first- and second-order momentum equations in
=>-direction lead to the fact that p, and Pz remain
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following representations:

V 2< = V2(:X)' T2 < = T2(:x) (for displacement effect)

and

Equation of state:

P2 + 1;e JV = T2(:x) + R2(:x) = P2(a) = R:r;(Ct.)

PI T. T. Re e, r,

V 2< = Ve, T2< = T. (for other effects).

On substituting equations (24)-{27)in equations (14)
(23), we obtain the following systems of ordinary
differential equations:

First-order boundary-layer similarity equations.t
Continuity: Boundary conditions:

il= 0:

ReT. Ti:x) y-
= - - = -[Tia)/T.l (36)r, T. y-I

D D

[(' I)T. JI/2
V = (Eat/Pc) Y-y w F'(O),

S

DDD

(28)

(29)

r 3F
G+-=O.

2

Momentum:

F" -(Ve/E)GF' = O.

Energy: V=O, (37)

H" -(aVe/E)GH' = -(aV;/T.HFY

Equation of state:

(30)

(31)

[
( I)T. JI/

2JV = (Ect/Pe) y-y w [H'(O)/Hw ] ,

TJ

Boundary conditions:

ij = 0: F = 0,G = ("*/Ve)(V,,./Tw ) = G...,

II = (TwiT.) = II w , /1~ 00: F -> I,H -> 1. (32)

Second-order boundary-layer similarity equations.
Continuity:

[(V2</Ve)V+(P2/PI)GJ+ [(V2</Ve)U

+(P2/PI)F] = -(iJt/Ve) cot a. (33)

/1-> 00: V -> I, W -> 1.

D D

In writing equation (36), wehave made use of equations
(10) and the relation P, = (y-I)ReTJy. Pe =
(y-I)ReT./y is obtained from the first-order outer
conical flow from the equation of state written on the
cone surface.

Equation (36) gives

TC

Momentum:
P2 = TiCt.)(_y_ _ w)
PI T. y-I

VP2e[-~(FV)+GV'+JIF']+(P2/PI)EVeF"

-E[V2eV'-(P2/PI)UeFT

= _ ReVeV2(Ct.) + EVe cot Ct.F'. (34)
2pI PI

for the displacement effect and

Energy:

V eT2e[-~(FH)W+G(WH)'] +T.V2eVH'

+(P2/PI)E[; H"+2V;(F')
2J

E
- -[T2cCWH)' -(P2/PI)T.HT

a

D TC
for the other second-order effects.

The boundary conditions for each second-order
effect are obtained appropriately from equations (37).

2.4. Skin-friction coefficient and wall heat-transfer
coefficient

The local shear stress at the wall ',,(r) and the local
wall heat-transfer coefficient qw(r), in terms of

(35) dimensional variables, have the following expressions:

(11 all)r"oCr) = -- ,
r 00 6=.

D TC
[(

JICp aT) JIU aUJq (r)= - -- +--
W ar eo r 00 6=.'

t Primes denote differentiation with respect to ij. The second term in the expression for qw(r) is known as
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(41)

. U'(O)
CF =-- + W(O) = CT

F(O) ,

I/Q = 2W(0)+H(O)W'(O) = CQ.
11'(0)

U'(O)
CF=--= CT

F(O) ,

W(O)
HQ = lI(O) H'(O) = CQ.

Wall slip :

U'(O)
CF=-=CT

F(O) •

W'(O) aU2 F(O)
lIQ =H(O~ +-'U(O~ = CQ.

. H'(O) T. H'(O)

Transverse curvature:

Temperature jump:

3. COMPUTATlOiXAL PROCEDURE

In th is section, we describe briefly the numerical
method used for the solution of similarity equations
obtained in Section 2.3. Equations (28}-{37) are solved
by a finite-difference technique with variable step size.
This technique has been discussed in detail by Blottner
[16].

The boundary-layer region has been divided into a
number of elementary regions by writing

fi}+l ='I}+/l'lj+I/2, i> 1,2,3•. . . •M-I

where tl, = 0 gives the cone surface and /I,u = 'I. the
edge of the boundary layer.

This scheme can be interpreted in terms of a
coordinate stretching approach. A new coordinate Z is
introduced where a un iform interval /lZ is used and is
related to iiby the relation

th = fj(Z j). j = I.2, ... ,M. (42)

Equation (42). finally, can be written as

II} = fi.(RzJ/~zO_I)/(R"~ZO_I), j = 1,2, . .. •At (43)

where Z, = (j-l)/lZand Z,u = l.Inequation (43).R is
the ratio of two successive step sizes. Rand /lZo are two
parameters which can be chosen suitably to give the
desired step-size spacing.

The expressions for the derivatives in terms of finite
differences are available in ref. [16].

We briefly outline the numerical method for the
solution of the non-linear coupled equations (28}-(32).
We decouple these equations and use an iterative
process to solve each equation separately for a single
dependent variable with suitable starting profiles. The
iterative process isstopped when the difference between
two successive iterates is less than 10-4

• For example.
we sol ve equation (29) for F after repl acing the
derivatives in terms offinite-differences and solving the
resulting system oflinear algebraic equations using the
Thomas algorithm [17]. This solution for F is used to

(39)

(38)

(40)

E{Tc~) = - - -.2: [W(O)H'(O)+ I/(O)W(O)]
r a

where

the contribution due to sliding friction and accounts for
the wall slip.

We define the dimensionless skin-friction coefficient
c, and the wall heat-transfer coefficient cQ as

CF = °u2(~)(cn, CT _ U'(O) U; y
e - F(O) +~ y-1'

HQ = 't2T.(rt)(CQ), CQ = lI(O) W(O) _ _ y_
e H'(O) y-l '

For the first-order boundary layer flow, we have
computed 1:41)r 112 and CH I' where

Theabsolute value of CH 1 is the usual Stanton number,
e.g. Sri = ICHII.

To study the effects of displacement, transverse
curvature, wall slip , and temperature jump at the
surface, we have computed the following quantities:

~ = 1+ecl21/clll = I +~[U2< U'(O)
£c}1) ( I r r l / 2 U, F'(O)

-(P2/Pl)"=O] = 1+ ~CF),

..5L = 1+I:C(21/C(l 1 = 1+ _1:_{1i<{W(O)
I:cHJ Q Q r' /2 r.

aU,U2< F'(O)} I:
+ ----y:;- H'(O)U(O) = 1+ ;m<HQ).

CF and lIQ are written below. separately. for each
second-order effect.

Displacement:

II!lT 26:IQ-J
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In Figs. 1-4, we have plotted the functions F, H, U
and IV representing the first- and second-order rad ial
velocity and temperature distributions in the boundary
layer region. Only tho se curveshave been plotted which
can be shown clearly and represent distinctly a
particular effect. The numbers in circles indicating the
curves correspond to the data sets numbers appearing
in the first column of Table 2.

In Figs . 3 and 4, the curves for U and JV a re drawn
showing the effects of displacement thickness and
transverse curvature. The effects of slip and
temperature jump are too small to be shown
graphically.

As mentioned earlier, Table 2 shows (in addition to
dat a sets) the first-order inviscid fiow q uan tities on the
cone surface and the value of the perturbation
parameter e corresponding to the data sets.

£'(0) and 11'(0)along with the skin-friction and heat
transfer coefficients are recorded in Table 3. The
negative sign of the qu antity rl/2Cll i means that the
direction of heat transfer is from the fluid to the body.
For the case of hot wall, represented by data set 5, the
direction is reversed, e.g, the heat flows from the body to

03 04 0.5 055
-z

obtain G from the continuity equation; equation (28).
Equation (30) is solved for the temperature distribution
H. After this the same procedure is adopted to solve the
equations (33}-{37) determining the functions for
second-order boundary-layer flow.

The values of F'(O),H'(O), U'(O)and W(O)occurring in
equations (39)-(41) are calculated by using a special
finite-difference expression which has been derived
elsewhere [16].

With these expressions for the wall derivatives and
the prescribed wall values of the functions F, H, U and
IV on the wall, we can calculate cfll, cHI, C}21, c~l, CT,
and CQ with the help of equations (39) and (41).cr/ec}ll
and cQ/I:C~1 then can be calculated from equations (40).
This is to be noted that CF and 11Q for the displacement
effect can be computed numerically only when 02(CX)
and T2(~) are known from the second-order inviscid
flow. Wchave alreadydeterrnined thesignsofO2(ex) and
'l2(~)which at [cast give the nature of the displacement
effect on skin friction and wall heat transfer.

The data sets in Table 1 are those for which the
computations have been carried out.Table 1also shows
the first-order inviscid flow quantities on the cone
surface corresponding to the data sets.The values of the
other parameters entering into calculations are given
below :

M = 61,11. = 6, R = 1.0025,L120 = 0.1,

y = 1.405,a = 0.74, a 1 = (11./2)1/2,

c1 = 15(11./2)1/2/8.

The values for At, R, L120 , have been chosen after many
trials and these values have given better results. We
have carried out computations also with E = 1, but
better agreement between IClll1 and experimental
Stanton number is obtained when E is calculated from
the expression given in Section 2.

The computations were done at the Computer
Centre of DFVLR, AVA, Gottingen using a computer
(Siemens 7.865-Il) comparable to an IBM-370/168 . A

. special sub-routine (AUTODBL) was used to obtain
better accuracy. AUTODBL performs "Double
Precision Arithmetic" for the computer program
written in "Single Precision Arithmetic".

To achieve a sufficiently high degree of accuracy,
the computer program was written in "Double
Precision Arithmetic" and AUTODBL was also used.
The iterative process was stopped when the difference
between two successive iterates was less than the
specified tolerance oflO- 4

• The number of iterations, in
general, was between 8 and IS.

More iterations were required in the case of blowing
and for the larger values of the wall to stagnation
temperature ratio. The computer time for a complete
set ofsolutions of the first- and second-order boundary
layer equations for one data set is about 15s.

4. D1SCUSSIO:" OF RESULTS

Group of data
sets

2,7,9
1.2
6.7
8.9

3.5
3,4

10

DB

F

02

Table 1

Effect
record ed

Cone-angle
Mach Number
Mach Number
Mach Number

Wall to Stagnation
Temperature-Ratio

Blowing

Remarks

For a 5' cone
For a 10' cone
For a Is>cone

For a 10' cone
For a 10' cone

Table 1details the characteristics ofthe data sets used FIG. I. First-order boundary-layerradialvelocity distribution
to analyse the results. function F.
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FIG. 3. Second-order boundary-layer rad ial velocity
distribution funct ion U for displacement and transverse

curvature effects.

the fluid.The absolute value of Cll ; correspond to the
local Stanton number.

Table 4 gives the values of V'(O) and W(O) for each
second-order effect.

The quantities CT and CQ, appearing in the
expressions for crlcc}1l and cQ!ccgl, respectively, are
recorded in Table 5 for each second-order effect.

Tabl e 6 shows the comparison of the ab solute values
of r'/2Cll, at r = 1 and the corresponding experi
mental value of Stanton number available in various
reports at DFVLR, AVA, Gottingen. The agreement
between these values is quite good .

The conclusions drawn on the basis of these results
are given below.

-0'4.L---------------~

FIG. 4. Second-order boundary-layer temperature distri
bution function IV for displacement and transverse curv ature

effects.

4.1. First-order boundary-layer flow
4.1.1. Effect ofcone angle. We can treat F'(O)asaskin

friction parameter. From Table 3, weobserve that F'(O)
decreases with increasing cone angle. This amounts to
saying that the skin friction decreases with incre asing
cone angle. Laurmann [22] has found that the drag
coefficient Co increases with decreasing cone angle.

From Table 6, it is clear that for a fixed r, ICI/,I
increases with increasing cone angle. Kienappel [23]
(Fig. 11,p. 33) has shown graphically that the Stanton
number increases with increasing cone angle.

4.1.2. Effect ofM ach nuniber. Skin friction increases
slightly with increasing Mach number. In ref. [22], it is
mentioned that there is a small but definite dependence
of drag coefficient Co on free-stream Mach number (M <Xl)
over the entire range of Reynolds number. Figure 19on
p.41 of ref.[23] also confirms this. Wealso note that the
magnitude of heat transfer increases with increasing
Mach number.

4.1.3. Effect of wall to stagnation temperature ratio.
Skin friction and the magnitude of the heat transfer
increase with increasing value of wall to stagnation
temperature ratio. Legge and Dankert [24] have shown
that the drag coefficient CD increases with increasing
wall temperature.

4.1.4. Effect ofblowinq. Due to blowing, skin friction,
and the magnitude of heat transfer are reduced. Mirels
and Ellinwood [25] have given viscous interaction

-- Displacement
_ ___ Transverse

Curvature
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Table 2. Data sets lind the corresponding surface values of inviscid velocity, temperature, pressure along with the values of the perturbation parameter c

First -orde r
Cone Free - Wall to First -order inviscid First -order
semi- stream Unit Stagnation stagna tion inviscid now tempera- inviscid

Data vertex Co ne Mach Reynolds temperature temperature Injec tion now velocity tu re on pressure on Perturbation Source
set ang le length number number TS rat io parameter on cone cone cone parameter of

number C( (em) Mao UR (K) TW 1 = tut; VW u. To p. c data

1 5° 17.15 6.8 1.01 x lOs 580 0.68 0 0.989973 0.633746 x 10- 1 0.275587 X 10- 1 0.258716 X 10- 2 [ 18]
2 5° 7.5 20.8 1510 1560 0.19 0 0.992919 0.127634 x 10- 1 0.166348 X 10- 1 0.904076 X 10- 1 [19]
3 10° 8.5 6.8 7.2 x 104 580 0.52 0 0.965250 0.875441 x 10- 1 0.768841 X 10- 1 0.432756 x 10- 2 [20]
4 10° 8.5 6.8 7.2 x 10" 580 0.52 0.5 0.965250 0.875441 x 10- 1 0.768841 X 10- 1 0.432756 X 10- 2

5 10· 8.39 6.9 3700 300 0.95 0 0.965909 0.87301 1 x 10- 1 0.810450 X 10- 1 0.238581 X 10- 1 [21]
6 10· 8.5 15.146 3050 1500 0.20 0 0.980385 0.301861 x 10- 1 0.355442 x 10- I 0.398166 X 10- 1

7 10· 8.39 20 3050 1450 0.20 0 0.982183 0.277520 x 10- 1 0.494120 X 10- 1 0.584495 x 10- 1 [19]
8 15· 10.4 6.5012· 7.2 x 104 580 0.52 0 0.951125 0.106100 0.91355 x 10- 1 0.368806 x 10- 2

9 15° 5 20 1690 1355 0.22 0 0.961380 0.440470 x 10- 1 0.596087 X 10- 1 0.103599 [ 19]

~
;Z
:::
>
~x
e
"

Table 3. First-order boundary-layer wall gradien ts F'(O) and ll '(O) of radial velocity and temperature along with the skin-friction and hea t-transfer coefficients

Date set cr l 12c(l)

number F'(O) [['( 0) r l 12cp) r.r 112cl l) r1 12cU ) rvcn, = -_Q-
To-Tw

I 0.175726 x 10' 0.137334 X 10 1 0.23414 1 0.605760 x 10- 3 -0.158300 X 10- 1 -0.231267 X 10- 3

2 0.178865 X 101 0.348513 x 102 0.239763 0.216764 x 10- 1 -0.844568 X 10- 1 -0.186404 X 10- 1

3 0.957220 0.168671 x 10' 0.371721 0.160865 x 10- 2 -0.802787 X 10- 1 -0.130787 X 10- 2

4 0.227126 0.466494 0.882008 x 10- I 0.381695 X 10- 3 - 0.222028 X 10- 1 -0.361719 X 10- 3

5 0.105164 X 101 -0.750396 0.341332 0.814353 x 10- 2 0.298094 x 10- 1 0.257744 X 10- 1

6 0.114410 x 10' 0.104435 X 102 0.328220 0.130686 x 10- 1 -0.124660 -0.12 1473 x 10- 1

7 0.960305 0.959960 x 10' 0.380667 0.222498 x 10- 1 -0.145892 - 0.210583 x 10- 1

8 0.868594 0.131857 x 10' 0.393403 0.145089 x 10- 2 -0.900262 X 10- 1 -0.123870 X 10- 2

9 0.878752 0.545308 x 10' 0.397789 0.412107 x 10- 1 -0.152833 -0.401034 x 10- 1



Table4. Second-order boundary-layer wall gradients V'(O)and W'(O) of radial velocity and temperature showing the effectsor displacement, wall slip, transverse curvature, and temperature jump at the
surface

V'(O) W'(O)
Data
set Transverse Temperature Transverse Temperature

number Displacement curvature Wall slip jump Displacement curvature Wall slip jump

1 -0,887730 x 102 - 0.240659 x 10J -0.119987 x 1QI -0.531361 0.322205 x 1QI 0.172939 X IOJ -0.224895 x 1QI -0.144311 X 102

2 -0.400131 X IOJ - 0.826077 X 102 -0.889029 -0.705874 x 1QI 0.101261 X 102 0,103772 X 10J -0.287003 x 1QI -0.283038 X IOJ

3 - 0.302938 X 102 - 0.252465 X 102 -0.150551 -0.107491 x 1QI 0.481967 x 1QI 0,338264 X 102 -0.127307 x 1QI - 0.177828 X 102

4 -0.195736 X 102 - 0.260548 X 102 0.391021 -0.768919 x 10- 1 0.785526 x 1QI 0.112319 X IOJ -0.159034 X 101 -0.422207 X 101

5 -0.375248 X 102 -0,332311 X 102 -0.214808 0.297441 0.109169 x 1QI 0.418087 X 102 -0.156522 X 101 -0.489588 x 1QI
6 -0,101440 X IOJ - 0.223110 X 102 -0.227942 -0.559160 x JOI 0.115644 x J02 0.381581 X 102 -0.194514 X 10' -0.137300 X IOJ

7 -0,942648 X 102 -0.122610 X 102 -0.106084 -0.465962 x 101 0.105830 x 102 0,260280 X 102 -0,168939 X 10' -0.980609 X 102

8 -0.215396 X 102 -0.144587 X 102 -0.110464 -0.979549 0.50 I060 x JOI 0.194931 X 102 -0.106838 X 10' -0.148394 X 102

9 -0.507640 X 102 - 0.890342 x 101 -0.861353 X 10- 1 -0.381608 X 101 0.104991 x 102 0.172958 x J02 -0.135932 X 10' -0.728412 X 102

Table 5. Second-order boundary-layer quantities CTand CQ for skin-friction and heat-transfer coefficients showing the effects ofdisplacement, transverse curvature, wall slip, and temperature jump at
the surface

CT CQ
Data
set Transverse Temperature Transverse Temperature

number Displacement curvature Wall slip jump Displacement curvature Wall slip jump

I 0.313004 x 1QI -0.136951 X IOJ -0,682808 0.571859 0.104620 x 102 0.747733 X 10J 0.421491 X 102 -0.606470 X 102

2 0,351507 X 102 -0.480655 X 102 -0.517283 0.111852 x 102 -0.128183 X 101 0.224154 X 102 0.791475 X 101 -0.305534 X 102

3 0.527343 x 1QI -0.263748 X 102 -0.157280 0.694350 0.592360 x 102 0.659220 X 102 0.560006 X 10' -0.310212 X 102

4 0.123101 X 10J -0.114715 X 103 0.172160 X 101 0.164069 0.518823 x 102 0.791444 X 103 -0.956118 x 101 -0.287452 X 102

5 0.123878 x 1QI -0.315994 X 102 -0.204260 -0.191442 -0.122057 x 102 -0.334588 X 103 -0.109702 X 102 -0.401295 X 102

6 0,2 J7963 x 102 -0.195010 X 102 -0.199233 0.535772 x 10' 0.278171 0.123647 x 102 0,459858 X 101 -0.240005 X 102

7 0.214485 X 102 -0.127679 X 102 -0.110469 0.381175 x 1QI 0.552371 0.989060 x 101 0.366172 x 1QI -0.199350 X 102

8 0.478076 X 10' -0.166461 X 102 -0.127176 0.580030 0.693093 x 1QI 0.404601. x 102 0.460739 x 10' -0.273852 X 102

9 0.150256 X 102 -0.101310 X 102 -0.980200 X 101 0.283086 x 1QI 0.139846 X 101 0.801872 x lO' 0.327000 X 10' -0.194237 X 102
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theory for slender axisymmetric bodies in hypersonic
flow.They have studied weak interaction on a cone and
have obtained the result that the drag reduces due to
blowing.

4.2. Second-order boundary-layer flow
(a) The combined elTect ofthe second-order elTects of

displacement, transverse curvature, slip and tempera
ture jump results in the decrease in skin friction while
the wall pressure increases. Skin friction increases, in
general, due to temperature jump while velocity slip
reduces skin friction. Individual contribution of each
second-order elTect on skin friction is recorded in
Table 5.

In ref. [25], it is mentioned that the surface slip tends
to reduce the magnitude of surface shear.

In ref. [15], it is mentioned that the skin friction
coefficient near the stagnation point on a convex wall
decreases due to curvature and displacement and the
opposite is true for the pressure coefficient at the wall.

(b) From the values of CQ in Table 5 it is clear that
the combined elTect of wall slip and temperaturejump
results in the decrease of the rate of heat transfer at the
surface. Due to transverse curvature and displacement,
the rate of heat transfer is increased in general. In the
case of a hot wall, the opposite happens.

Papenfuss [26] has shown that the heat transfer is
influenced by the geometry of the surface. Further, the
non-continuum elTects of wall slip and temperature
jump are advantageous with regard to the second
order heat transfer. In ref.[26], higher-order boundary
layer elTects at the stagnation point of blunt bodies in
laminar hypersonic flow have been studied. '

(c) The dominance of second-order elTects on skin
friction and heat transfer coefficients reduces with
increasing cone angle.

(d) The second-order elTects become quite signific
ant in the presence of blowing and at high Mach
numbers.

(e) From Table 5, it is clear that the transverse
curvature and displacement elTects have greater
significance in comparison to wall slip and temperature
jump elTects for the flow past cones.
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1975-1976 and 1981. He wishes to thank Professor Dr Walter
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ECOULEMENT DE SECOND ORDRE A COUCHE LIMITE AUTOUR DE CONES EFFILES

Resume-On etudie en detail des efTetsde second ordre d'epaisseur de deplacement, de courbure transversale,
de glissement parietal et de saut de temperature pour un ecoulement acouche limite sur des cones effiles de
demi-angle 5°, 10' et 15°.II existe des solutions affines des equations adimensionnelles de premier et de second
ordre, et des solutions nurneriques des systernes resultants d'equations differentielles sont obtenus en utilisant
une technique de differences finies avec pas variable, Les eflets de second ordre sont calcules pour differentes
valeurs du nombre de Mach, de temperature de paroi et de parametre d'injection. Quelques resultats de
premier ordre pour Ie transfert thermique sont compares ades resultats experirnentaux obtenus au DFVLR.

GRENZSCHICHTSTROMUNGEN ZWEITER ORDNUNG AN SPITZEN KEGELN

Zusammenfassung-Grenzschichtelfekte zweiter Ordnung wie Verdrangungsdicke, Qucrkrummung,
Wandschlupf und Temperatursprung wurden ausfUhrlich fUr Striimungen an spitzen Kegeln mit einem
hal ben Schcitelwinkel von 5°; 10° und 15° untersucht. Es existieren Ahnlichkeitslosungen der
dimensionslosen Grenzschichtgleichungen erster und zweiter Ordnung. Numerische Losungen der
resultierenden Systeme gewohnlichcr Dilferentialgleichungen wurden nach der Methode der finiten
Differenzen mit variabler Schrittweite erhalten. Die Grenzschichteffekte zweiter Ordnung wurden fiir
verschiedenc Werte der Mach-Zahl, der Wandtemperatur und des Injektionsparameters berechnet. Einige
Ergebnisse erster Ordnung fUrden Warmeubergangskoeffizienten an der Wand wurden mit bei der DFVLR

verfiigbaren experimentellen Daten verglichen.
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TElIEHHE B nOrPAHHlIHOM CJlOE Y OCTPblX KOHYCOB . PACC4l1TAtiHOE C
YlfETOM 4flEHOB BTOPOrO nOP.sf.QKA

AHHOT3UKM-npOBCllellO .nCI3n1,1I0e IICCJlenOB3HIIC BJlH~IUI~ yxera '1JleHOB BTOpOrO nopaaxa ua

XapaKTepllCTIIKII norpannxuoro CJlOli - TOJlWIIHY Bl>rreCII CJllIlI . napasrerp nonepexuoii Kp"BIIJ/lhi.

cxom.xenae H3 CTCHKC II cxaxox Te~llIepaTypbl - npn 06TCICaHlIII OCTpLlX KOllyCOB C yrnaxru
nonypacrnopa 5°. 10' II 15' . B nacrosuree BpeMlI 6e3pa3MepJlMe ypaanenns nns norpannxuoro C.l01l.

paCC'IIITLlBae~lOro C y'lCTOM nepsoro II sroporo nopsnxa, peurarorcs aBTmlO.'l.e.1LHLI~1II sreronaxru.
B pafiore nOJlY'!eHLI 'iIlCJIeIIllLJe peureuns CIICTe:\! 06L1'1HLlX JlII<p<pepeHllIIaJlLIILlX ypaanemni MeTo.uD~1

ICOlle'lIlLI X pa311DCTeii C nepexreansnr pasxrepoxs mara. 34>4>eICTbl BTOpOro nopsnxa paCC'IIITLlBaIOTCli

A.'Ili pa3J1I1'1HbIX 3Ha'ieHllii '1I1CJ1a Maxa, rcsrneparyp CTeJlICI! II napaxrerpoa anysa . Ilpoaeneuo
cpaaueune nexoropsix pe3YJlbTaTOB nepaoro nopsnxa no rennoorixreuy CTellKII C nxreiouru srucs

axcnepusreuraneunsm JlaIlHbl~lII.




