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Abstract—Second-order boundary-layer effects of displacement thickness, transverse curvature, wall slip and
temperature jump have been investigated in detail for flow past sharp cones of 5°, 10° and 15° semi-vertex
angles. Similar solutions of the non-dimensional first- and second-order boundary-layer equations exist and
numerical solutions of the resulting systems of ordinary-differential equations have been obtained using the
finite-difference technique with variable step size. The second-order effects have been computed for different
values of Mach number, wall temperature, and injection parameter. Some of the first-order results for wall
heat transfer have been compared with the available experimental results at DFVLR.
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NOMENCLATURE

constant appearing in the expression for
wall slip condition, equations (4)
constant appearing in the temperature
jump condition, equations (4)
skin-friction coefficient
heat-transfer coefficient
first-order boundary-layer rate of heat
transfer at the surface
constant in viscosity law, equation (5)
function appearing in the first-order
radial velocity component
function defining the quantity V,, in the
first-order boundary-layer flow
value of G on cone surface
first-order boundary-layer temperature
distribution function
value of H on cone surface
thermal conductivity
slant cone length
the number of sub-divisions of the
boundary-layer domain
free-stream Mach number
non-dimensional pressure
functions in the outer expansion for p
functions in the inner expansion for p
value of p on cone surface
inviscid first-order pressure on cone
surface
non-dimensional radial coordinate
ratio of successive variable step sizes
inviscid first-order density on cone
surface

functions in the outer expansion for p
non-dimensional temperature
functions in the outer expansion for T
value of T on cone surface
free-stream temperature
functions in the inner expansion for T

1On leave from the Department of Mathematics, Indian
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functions in the expressions for ¢, ¢, . ..
inviscid first-order temperature on cone
surface

non-dimensional velocity in r-direction

U,U, functions in the outer expansion for u

Uy, U, ... functions in the inner expansion for u

iy, ity ... functions in the expressions for uy, u, ...

U, first-order inviscid velocity component
in r-direction on cone surface

U, free-stream velocity

U function in the expression for i,

v non-dimensional velocity component in
0-direction

Vi, V, ... functions in the outer expansion for v

vy, U2 ... functions in the inner expansion for ¢

Uy, Uz ... functions in the expressions for vy, v,...

V,, V... functions defining the quantities
ﬁl<ﬂ+6l> and ﬁl("&'*‘ﬁZ)

2 2

vV function in the expression for 7,

v,(r) suction/injection velocity on cone
surface

54 function in the expression for ,/f;

Z quantity appearing in the expression for
i, equation (43)

Greek symbols

o cone semi-vertex angle

y ratio of constant specific heats of the
fluid

€ perturbation parameter, defined by
equation (2)

n similarity variable .

q the coordinate defined by | p,(s) ds

o]

0 angle between the radius vector and the
cone axis

© stretched coordinate in 0-direction

K¥ value of the product R, T,

I viscosity

& transformed coordinate in r-direction
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p density

P1 P2 - .. [unctions in the inner expansion for p
f1» Pa ... functions in the expressions for py, p, ...
a Prandtl number

1. INTRODUCTION

THE FLOW around a pointed cone is one of the most
important in the study of aerodynamics of revolving
bodies and has great practical value. Hantzsche and
Wendt [1] have transformed the laminar boundary-
layer equations for the supersonic flow past cones to the
equations for the flow past a flat plate and have
established relationships for boundary-layer thickness,
skin-friction coefficient and the rate of heat transfer for
the flows past cones and flat plates. Krasnov [2]
calculated skin friction and heat transfer for the
laminar boundary-layer flow past cones using the
integral form of the governing equations. Very recently
Krasil’schikov and Nosov [3] have studied experi-
mentally some aerodynamic properties of cones in
viscous supersonic flow. In all these studies, the effects
of inviscid-viscous flow interaction, transverse curva-
ture, wallslip and temperature jump at the surface have
not been taken into account. These effects assume
significance at high Mach numbers and in the presence
of blowing.

It is well known that the classical boundary-layer
theory is valid only when:

(a) the boundary-layer thickness is small in
comparison with a characteristic curvature dimension
of the body surface, and

(b) the rate of growth of the boundary-layer
thickness is small.

Under extreme conditions of fluid motion, par-
ticularly in very high-speed flight at high altitude, the
boundary layer near a surface can become sufficiently
thick to materially affect the external flow. In turn, this
influences the forces and heat transfer at the wall. At the
same time and to the same order, roughly speaking,
other assumptions of the classical boundary-layer
theory begin to break down. Under these circumstances
it becomes necessary to takeinto account theeffects due
to the boundary layer itself (displacement thickness
effect), non-uniformities in the external stream,
curvature of the surface, wallslipand temperature jump
at the surface. The classical boundary-layer theory has
been extended to deal with these eflects. This extension
of the classical boundary-layer theory has been termed
higher-order boundary-layer theory, an excellent
criticalreview of which was given by Van Dyke [4]. The
method of matched asymptotic expansions is
particularly useful in developing higher approxim-
ations to the boundary-layer theory and Van Dyke has
worked out the second-order solutions for incom-
pressible [5, 6] and compressible [7] flows. Higher-
order boundary-layer theory has received considerable
attention from many authors, and a comprehensive
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bibliography may be found in Van Dyke’s review [4].
Some attempts have been made earlier to study the

eflects of displacement, curvature, slip and temperature

jump in the boundary-layer flow past sharp cones.

Probstein and Elliott [8] studied, as a first-order
effect, the transverse curvature effect in compressible
axially-symmetric laminar boundary-layer flow and
found that for cones and cylinders with zero pressure
gradient the first-order correction to the Mangler
formulation shows that the effect on both the skin-
friction coefficient and heat-transfer rate can become
appreciable when the ratio of the boundary-layer
thickness to the body radius has a value which is less than
or of the order of unity. At a constant value of this
parameter, the transverse curvature and displacement
effects are increased in magnitude when either the ratio
of the wall to free-stream temperature or Mach number
is increased. All other conditions being equal, for the
same value of this parameter the skin-friction
coefficient and heat transfer increase on the cylinder is
greater than on the cone. Lewis et al. [9] have studied
mass transfer and first-order boundary-layer effects on
cones at supersonic and hypersonic conditions. They
found that the total drag increases due to the effects of
displacement, transverse curvature, slip, and tempera-
ture jump. Mass transfer at the cone surface resulted in
drag reduction. Further, under certain conditions, the
effects of velocityslip and temperature jump were found
to be quite significant.

The present work deals with the detailed study of the
laminar boundary-layer flow past circular cones of 5°,
10°, and 15° semi-vertex angles at high Mach numbers.
Wehave employed thesingular perturbation technique
to derive the non-dimensional boundary-layer
equations of the first- and second-order in a spheri-
cal polar coordinate system with axial symmetry. The
first-order boundary-layer equations describe the
Prandtl boundary-layer flow while the second-order
boundary-layer equations deal with the effects of dis-
placement thickness, transverse curvature, wall slip,
and temperature jump at the surface. We have con-
sidered these effects for different values of the wall to stag-
nation temperature ratio. The effect of injection at
the cone surface has also been investigated.

Due to the linearity of the second-order boundary-
layer equations, it is possible to study each second-
order effect individually and thus determine their
relative importance. Tables [10, 11] have been used to
calculate the first-order outer inviscid conical flow. The
second-order inviscid flow equations have been used to
obtain relationships among the surface values of the
second-order flow variables. These quantitiesenterinto
the second-order boundary-layer equations.

Similar solutions of the first- and second-order
boundary-layer equations are obtained and the
resulting sets of ordinary differential equations have
been solved numerically by finite-difference technique
with variable step size. The results are presented
graphically and in tabular form. Some of the results of
the first-order boundary-layer flow are found to be in
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good agreement with the available experimental results
at DFVLR, AVA, Géttingen.

2. ANALYSIS

The equations of continuity, momentuin, energy,
and state are rendered dimensionless by using the
characteristic Jength L (slant cone length), free-stream
velocity U, p,U% (twice the stagnation pressure),
Ul/e,, n(UZ%/c,), respectively, for the radial distance r
from the vertex of the cone, the velocity components u, v
inr and 0 directions, the pressure p, the temperature T
and the viscosity u.r and 0 are the coordinates ofa point
in the flow-field in the spherical polar coordinate
system with axial symmetry. ¢, is the specific heat at
constant pressure. An ideal gas is assumed. ¢, and the
Prandtl number ¢ = pc,/k are assumed constant. k is
the thermal conductivity of the fiuid.

The entire flow-field between the shock and the cone
surface is divided into two regions:

(a) outer inviscid flow, and
(b) boundary layer close to the cone surface.

The coordinate 0 in the boundary layer is stretched
and the new coordinate @ is defined by the relation

O =0—ao)e )

where a is the semi-vertex angle of the cone. The
singular perturbation parameter ¢ is given by

e=[uU%/c)pU L] )
The equation of state is
p=[(r—1/71pT. 3)

We assume different perturbation series in the two
regions for the flow variables u, v, p, p and T.

In addition to the equations of continuity,
momentum, energy, and state, a suitable viscositylaw is
also assumed. The system of equations is to be solved
under the following boundary conditions on the cone
surface:

u = (a/pu) {{r— 1)/7]Tw}”2(5 @> .
8=z

r ¢o

v = ev(r), G)]

T = T, +(%c,/p.) {[(— D/YIT.} 2<ﬁ a—T> .

r 80 Jo-,
In the above equations y =c,/c,, a; and ¢, are
constants given by Street [12]. Equations (4) account
for the non-continuum effects of wall slip and
temperature jump. The subscript w refers to the cone
surface and v,(r) is the variable velocity on the cone
surfacein  direction. v, > 0 gives injectionand v, < 0
means suction. In the present work, we have assumed
v, > 0.

In addition to the conditions given by equations (4),
we apply the usual Rankine-Hugoniot conditions at
the shock.

It will be shown in the latter part of the analysis that
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the pressureinthe boundary layerisindependent of the
coordinate ©. In view of this it is permissible to assume

pu = constant = E, (%)

for viscosity.

The constant E can be assumed to be an average
constant in the boundary layer depending upon the
constant wall temperature T, and the constant
temperature T, at the edge of the first-order boundary-
layer flow. Gersten et al. [13] have assumed pp = pp,,
= 1 which amounts to regarding y as a linear function
of temperature if pressure across the boundary layer
does not vary. Mitome and Yasuhara [14] have
assumed

oy

pwuw
and have regarded N as an average constant in the
boundary layer. N is taken to depend on the constant
temperatures at the wall and the edge of the boundary
layer. We have assumed the following relationship for

E:
E = k*T!/2 ——l +5)
Y A\T,+5,

where
k*=R.T,
S, = 1104°x/[(y— )M T,],
T, = T/ly— DML T].

T, is the dimensional free-stream temperature, T, is the
dimensional stagnation temperature, Ty is the
dimensionless stagnation temperature, M  is the free-
stream Mach number, and R, and T, are the first-order
outerinviscid flow density and temperature on the cone
surface, respectively.

This choice of E implies that the linear viscosity law
will give a better approximation to the more exact
Sutherland formula in the temperature range close to
the constant wall temperature [15].

In the following, we describe briefly the analysis in
the two regions of the flow.

2.1. Quter expansion
In the outer inviscid flow region, we assume

u(r,0) = U (0)+eUy(r, 00+ ... (6)

with similar expansions for v, p, p and T.

On substituting these expansions in the .non-
dimensional equations of continuity, momentum,
energy, and the equation of state (3) and equating the
coefficients of e2 and ¢, we obtain the first- and second-
order equations for the flow in the outer region. The
solution of the first-order conical flow is available in the
form of tables [10, 11] and we have used these tables to
compute the surface values

Ul(o =a)= UoTi(0=o)=T,P|(0 =)= P,,
R(@=a)=R..
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These quantities appear in the first- and second-order
boundary-layer equations and the second-order outer
flow quantities on the cone surface.

The second-order inviscid flow equations admit a
solution of the form

040 7,(0)
U0 = A Vi 0) =2,

Py(0)

PZ(rr 0) = r—”z—‘9 (7)
R,(0) T:(0)
Ry(r,0) =~ Talt, 0) = 5~

On substituting (7) in the second-order inviscid flow
equations, we obtain a system of ordinary differential
equations for U,(0),...,etc. This system of equations
must be solved numerically to determine the complete
solution of the second-order inviscid flow.

Our main interest here is to obtain the values of U,
...,etc. on the cone surface. This is done by writing
the second-order inviscid flow equations on the cone
surface and using the following first-order inviscid flow
relations on the cone surface:

N(0=a) =0,

(boundary condition for first-order flow)

av, )
—Liov =0, 8)
(d() . (

dP,
<W)e=, =0.

The second-order inviscid flow equations, when
written on the cone surface, give the following
relations:

U\  (op,
(RIUIF)0=J - < ar >0=1
oT, P,
(Ra—)—(a—) ®)

—1
Py(r,0) = yT [Ry(r, &) Ty(2)

+ Ry(0)Tofr, 2)].
Making use of equations (7), we obtain from equation

&)
Py@) = ~R.U.U,(») = R.Ty(=)

=$[R=Tz(a)+nﬁz(a)]. (10)

We have, from the first-order inviscid equation of state,
y—1
P.=1"_RT.
?
From equation (10) we also have
T(0) = —U.Uyf). (11)

It has been pointed out [9] that the displacement effect
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increases the pressure in the inviscid flow and this
implies that P,(x) must be positive. In view of equations
(10)and (11), U ,(x) and Tx(x), respectively, are negative
and positive. Thesigns of U,(x) and T3(z) will determine
thenature of the displacement effect on skinfrictionand
heat transfer at the surface.

2.2. Inner expansion
The flow variables in the boundary-layer region are

expressed in the following manner:
u(r,0) = uy(r, @) +eu,(r,®)+ ..., (12)

withsimilarexpansionsforv, p, pand T.Fromequation
(5), the viscosity p can be expressed as

__E P21, ©)
“—Pl(",e)I:l +]

—¢ 1
21(1,0) 42
The first- and second-order boundary-layer equations
areobtained bysubstitutingequations(12)and (13)into
the full non-dimensional equations of continuity,
momentum, energy, and state and equating the
coefficients of &° and &'. The corresponding boundary
conditions at the surface are obtained in a similar
manner from equations (4). The conditions at the
boundary-layer edge are obtained by using the
matching principle. We give below the complete sets of
the first- and second-order boundary-layer equations
along with the boundary and matching conditions.
First-order boundary-layer equations.
Continuity:

0 2 1 0
B_(P11‘1)+ —{pr))+— —=(pv) =0. (14)
r r r ¢O©

Momentum:
ouy vy Ou, E 8 (1 ouy
— == ——=—1] (15
”‘(“‘.ar ) Fope)
Energy:
at, vy 0ty El1 6 (1 dt
”‘("‘ar +tT%e) s p, 6O
i(“j“l)z]. (16)
P1\CO

Equation of state:
pit1 = (R T1)s-, = R.T, = constant = r*. (17)
Boundary conditions:
O=0:u, =0, =v(r)= rll/—/“;,
t, = T, = constant, (18)
O -y —u,t, »T.

¥, is a constant quantity which is positive for injection
and negative for suction at the cone surface. We have
considered ¥, > 0 only because the second-order
effects become increasingly significant at high Mach
numbers and in the presence of blowing as stated in ref.

[15].
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Second-order boundary-layer equations.
Continuity:

] 2
‘a—r(l’l“z +paup)+ ;(quz +pathy)

a p1vy cot o
—{(pyvr+poy) = — L —— (19)

Ty

N | -
Q

TC
Momentum:
Ju,

u 01y +u + + b2 Oty
P1 Yor or r éO

+Ep2 a1 ou E 8/(1 éu, p,0u
r’p, éO\p, 60/ r*0\p, @ p? O

vy Ouy
r ¢O

ou, E cot o du,
=(RrR,U ottt Y
( YUV G Joma  PPpy 0O (20)
D TC
Energy:
oty 0ty v, 0ty v, 0t
p‘("‘a_r+"za_r+Ta_o+ r 50

Ep,[1 8/ 1 o, 2 (0u \?
B e R
r‘p | o 6O\ p, ¢© PI\OO
E 010 _p o) 2E Ouiu
r’c 6@\p, 6@ p,260) r?p, 6O 6O

ou, E cot a 0ty
= —u,| RyU,—= X 21
"‘( Uiy >,,=,+ op, 00 @

D TC
Equation of state:

P2 Iz 1 [Ty(a) | Rya)
LRI — 22
T +t: "ml: T, * R, @

D

soundary conditions:
Ea,(y—1)"2t, éu
O=0: u,= [ﬂ% __‘ ,
pipryr 60 Jo—o
S
vz = 0,

Ec,(y—1)"2t, ot
[2=|:_‘(7T1A_1 , (23)
pipY' 60 Joo

TJ
U(2) Ty(«)
O — 00U, —>——r”2 , L —»—rm .
D D

lhe first- and second-order momentum equations in
d-direction lead to the fact that p, and p, remain
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invariant with respect to @ and thus we obtain

p1{r, @) = P,(0 = o) = P, = constant,

Py(=)

pz(f,@) = PZ(rro =¢1) = T”Z M

As a consequence of this relation, we have

dp, _ (9P, ou,
or —(a—, - T\ &)

on using equation (9).

This confirms the statement made in writing
equation (5) for viscosity. We have made use of the
above expression for dp,/ér and equations (14}(17) in
writing equations (19)(22). The terms on the RHS of
equations (19)+23) with the letters D, TC, S and TJ
below them account, respectively for the eflects of
displacement, transverse curvature, wall slip, and
temperature jump. Equations (19)~(23) are linear and
this property has been used to study the contribution of
each second-order effect separately. This has been done
by splitting the functions u,, v,, p, and t, in the
following manner:

t; = uP + 1T 4 uP 4 uf"
with similar expressions for other functions. This

approach has been used by Van Dyke [7].

2.3. Similar solutions of first- and second-order
boundary-layer equations

We transform (r, ®) domain to (, ) by applying the
following transformations:

ro

é =r n= "17 = TIIZG. (24)

To further simplify the mathematical analysis, a new
variable7jisintroduced. The relation between s and 77is

n
= J p1(s) ds. (25
0

The dependent variables are written as
uy = i,(n), vy = 6,(N)/E2, ¢, = (),

p1 =/ uy = ﬁz('l)/filzs v, = 5,(n)/¢,

t, = B/EY2, py = py(n)[E. (26)
In terms of new variable 77, we write
iy = UeF(ﬁ)s l_,1 = UeG(ﬁ)! I = TeH(ﬁ)
27)

_ 2 Taeo o, .
iy = Us UG, Vs = UacV(iD 2 = WG,
1

where
_ nit - nu. _
1/1 = ﬁl(‘lz_l +ﬁ1) and Vl = p_l(% +Uz).

U,.and Ty inequations(27)are constantsand have the
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following representations:

U, = U,(0), T, = Ty{a) (for displacement effect)

and
UZc = Un

On substituting equations (24)-(27) in equations (14)-
(23), we obtain the following systems of ordinary
dilferential equations:

First-order boundary-layer similarity equations.}
Continuity:

T,.= T, (for other effects).

G+ 371: =0. (28)
Momentum:
F"—(U./E)GF' = 0. (29)
Energy:
H"—(0U/E)GH = —(cUY/T)(F)*.  (30)
Equation of state:
pily = K. (31)
Boundary conditions:
§=0:F=0,G = (x*U)V,/T,) = G,
H=(T,/T)=H, f—ow:F->1H-1. (32

Second-order boundary-layer similarity equations.
Continuity:

[(U2/UYY +(02/p)GT +[(U2/UIU

+(p2/p1)F] = —(0,/U,) cot a. (33)
TC
Momentum:
U U, [—3FU)+GU'+ VF']+(p,/p,)EUF"
—E[U,. U —(5,/p)UFY
__ R,U,_Uz(a) 4 EU,_cot aF,' (34)
2p, P1
D TC
Energy:
UT[-3FHW+GWH)]+T.U, VH
+(ﬁz/ﬁ1)E[;H +2UHF )z]
E 7 ’ - f= 13
— LAV —(3:/p)TH] (35)

’

RUZU E (cot )T,
,U,_l]z(d)F+ (C? a) cH
2p, o
D TC

—2EU U, FU =

T Primes denote differentiation with respect to 7.
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Equation of state:

P2, Toep T | Roe) _Po@) _ RT)
p_l 7; 71: R: Pe P:
D D D
RLTE 7 .
S\ i A S T].
PR e G LA N ED
D D
Boundary conditions:
i7=0:
y— 1T, "
U= (Eal/a)[(’ D ‘"] F(0),
S
V=0, (37
—)T, "
W = (Ecy/P,) [‘y y’ ] LH'OYH.],
T)

fowo:U-1, W1,
D D

Inwriting equation (36), we have made use of equations
(10) and the relation P,=(y—1)R,T.fy. P, =
(y—1R,T./y is obtained from the first-order outer
conical flow from the equation of state written on the
cone surface.

Equation (36) gives
5, T
¥=2@<7_4O
A T \r—1

for the displacement effect and

=W

i l;?l

for the other second-order effects.
The boundary conditions for each second-order
effect are obtained appropriately from equations (37).

2.4. Skin-friction coefficient and wall heat-transfer
coefficient

The local shear stress at the wall 7,(r) and the local
wall heat-transfer coefficient g.(r), in terms of
dimensional variables, have the following expressions:

ou
n() = (% 5) :
6=z

_ _|(Hep TN pudu
9{0) [(ar ao)'+ 30 |y

The second term in the expression for q,(r) is known as
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the contributiondue tosliding friction and accounts for
the wall slip.

We define the dimensionless skin-friction coefficient
¢¢ and the wall heat-transfer coefficient ¢ as

“= T ectV +%¢{),
Iw 38
o= iprodp, O
where
o = EULO oy ETHO)
f (ST Q rl/Z(a) L]
(2) __ E 1 ~ 1= t,
Ct —T[Uch (0)—-(p2/p,),;=oU,F(0)],
E(T, \ , 39
o= - 7{72[;;/(0)11 o+nowor
T.
—;{ 2/P1)i=oH'(0)
+ UCUZCF'(O)U(O)}.

For the first-order boundary layer flow, we have
computed et and CH,, where

__ep)
(T,—T,)

The absolute value of CH , is the usual Stanton number,
e.g. St; = |CH,|.

To study the effects of displacement, transverse
curvature, wall slip, and temperature jump at the
surface, we have computed the following quantities:

U, UQ)
U, F(0)

CH,

c
(2)/,(1) _
oD = 1+4ec”/ct 1+ ”2[

—(ﬁz/ﬁl)r7=o] =1+ rl_s,z(CF),

%}é, = 1heced = 1+ ;f,—z{%{ww) (40)
W) o
+ H(O)ma] —(P2/P1)i=0
oUUs FO)
o U0 = 1+ o)

CF and HQ are written below, separately, for each
second-order effect.

Displacement:
_ U, U'() 14
CF = U, ——(CT), CT_F’(O) Te y—l’
Ty(») VO v
HQ = ———(CQ) cQ = H(O)—m T

HMT 26:10-J
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Transverse curvature:
_Uo_
CF = F10) CT,
_ W) _
HQ = H(O)H—,(a)— = CQ. @41
Wall slip:
_UO_
CF = F0) =T,
W'(0) aU 2 F(0)
HQ = H(O U 0 CQ.
¢ ( )_—H’(O) + ( )——(0) 0
Temperature jump:
U’(O)
CF = Fior 0 +W(0) =
_ W)
HQ = 2W(O)+H(O)———H 0) = CQ.

3. COMPUTATIONAL PROCEDURE

In this section, we describe briefly the numerical
method used for the solution of similarity equations
obtained in Section 2.3. Equations (28)37) are solved
by a finite-difference technique with variable step size.
This technique has been discussed in detail by Blottner
[16].

The boundary-layer region has been divided into a
number of elementary regions by writing

Mre1 = ’7]+A’7j+1/2) j=123..,M-1

where 7j; = 0 gives the cone surface and 7, = 7j, the
edge of the boundary layer.

This scheme can be interpreted in terms of a
coordinate stretching approach. A new coordinate Z is
introduced where a uniform interval AZ is used and is
related to 7 by the relation

L=0Z), j=12,... .M. (42)
Equation (42), finally, can be written as
7y = REMP —1/(RVA%o~1), j=1,2,...,M (43)

where Z; = (j—1)AZ and Z,, = 1.Inequation(43),Ris
the ratio of two successive step sizes. Rand AZ; are two
parameters which can be chosen suitably to give the
desired step-size spacing.

The expressions for the derivatives in terms of finite-
differences are available in ref. [16].

We briefly outline the numerical method for the
solution of the non-linear coupled equations (28)-(32).
We decouple these equations and use an iterative
process to solve each equation separately for a single
dependent variable with suitable starting profiles. The
iterative processis stopped when thedifference between
two successive iterates is less than 10~4, For example,
we solve equation (29) for F after replacing the
derivatives in terms of finite-differences and solving the
resulting system of linear algebraic equations using the
Thomas algorithm [17]. This solution for F is used to
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obtain G from the continuity equation, equation (28).
Equation (30)is solved for the temperature distribution
H. After this the same procedure is adopted to solve the
equations (33)~(37) determining the functions for
second-order boundary-layer flow.

The values of F'(0), H'(0), U'(0) and W’(0) occurring in
equations (39)-(41) are calculated by using a special
finite-difference expression which has been derived
elsewhere [16].

With these expressions for the wall derivatives and
the prescribed wall values of the functions F, H, U and
¥ on the wall, we can calculate ¢V, ¢, ¢, ¢3, CT,
and CQ with the help of equations (39) and (41). ¢/ec?
and eyfecy)’ then can be calculated from equations (40).
Thisisto benoted that CF and HQ for thedisplacement
effect can be computed numerically only when U,(z)
and Ty(«) are known from the second-order inviscid
flow. We havealreadydetermined thesigns of U () and
Ty(x) which at least give the nature of the displacement
effect on skin friction and wall heat transfer.

The data sets in Table 1 are those for which the
computationshavebeen carried out. Table 1 also shows
the first-order inviscid flow quantities on the cone
surface corresponding to the data sets. The values of the
other parameters entering into calculations are given
below:

M = 61,7, =6,R = 1.0025,AZ, = 0.1,
y = 1405, = 0.74, a, = (1/2)"2,
¢y = 15(m/2)"12/8.

The values for M, R, AZ,, have been chosen after many
trials and these values have given better results. We
have carried out computations also with E = 1, but
better agreement between |CH,| and experimental
Stanton number is obtained when E is calculated from
the expression given in Section 2.

The computations were done at the Computer
Centre of DFVLR, AVA, Géttingen using a computer
{Siemens 7.865-11) comparable to an IBM-370/168. A

_special sub-routine (AUTODBL) was used to obtain
better accuracy. AUTODBL performs “Double
Precision Arithmetic” for the computer program
written in “Single Precision Arithmetic”.

To achieve a sufficiently high degree of accuracy,
the computer program was written in “Double
Precision Arithmetic” and AUTODBL was also used.
The iterative process was stopped when the difference
between two successive iterates was less than the
specified tolerance of 10~*. The number ofiterations, in
general, was between 8 and 15.

More iterations were required in the case of blowing
and for the larger values of the wall to stagnation
temperature ratio. The computer time for a complete
set of solutions of the first- and second-order boundary-
layer equations for one data set is about 15 s.

4. DISCUSSION OF RESULTS

Table 1 details the characteristics of the data sets used
to analyse the results.

M. N. MATHUR

Table 1
Group of data Effect
sets recorded Remarks
2,71,9 Cone-angle
1,2 Mach Number Fora 5°cone
6,7 Mach Number For a 10° cone
89 Mach Number For a 15° cone
Wall to Stagnation
3,5 Temperature-Ratio For a 10° cone
3,4 Blowing For a 10° cone

In Figs. 1-4, we have plotted the functions F, H, U
and W representing the first- and second-order radial
velocity and temperature distributions in the boundary-
layer region. Only those curves have been plotted which
can be shown clearly and represent distinctly a
particular effect. The numbers in circles indicating the
curves correspond to the data sets numbers appearing
in the first column of Table 2.

In Figs. 3 and 4, thé curves for U and W are drawn
showing the effects of displacement thickness and
transverse curvature. The effects of slip and
temperature jump are too small to be shown
graphically.

As mentioned earlier, Table 2 shows (in addition to
data sets) the first-order inviscid flow quantities on the
cone surface and the value of the perturbation
parameter ¢ corresponding to the data sets.

F'(0)and H'(0) along with the skin-friction and heat-
transfer coefficients are recorded in Table 3. The
negative sign of the quantity r'/2CH, means that the
direction of heat transfer is from the fluid to the body.
For the case of hot wall, represented by data set 5, the
directionisreversed, e.g. the heat flows from the body to
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FiG. 1. First-order boundary-layer radial velocity distribution
function F.
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0

FIG. 2. First-order boundary-layer temperature distribution
function H.

the fluid. The absolute value of CH, correspond to the
local Stanton number.

Table 4 gives the values of U'(0) and 1¥’(0) for each
second-order effect.

The quantities CT and CQ, appearing in the
expressions for cg/ect” and cpfecl)), respectively, are
recorded in Table 5 for each second-order effect.

Table 6 shows the comparison of the absolute values
of r'2CH, at r =1 and the corresponding experi-
mental value of Stanton number available in various
reports at DFVLR, AVA, Géttingen. The agreement
between these values is quite good.
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FiG. 3. Second-order boundary-layer radial velocity

distribution function U for displacement and transverse
curvature effects.
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F1G. 4. Second-order boundary-layer temperature distri-
bution function¥¥ for displacement and transverse curvature
effects.

The conclusions drawn on the basis of these results
are given below.

4.1. First-order boundary-layer flow

4.1.1. Effect of cone angle. We can treat F'(0) as a skin-
friction parameter. From Table 3, we observe that F'(0)
decreases with increasing cone angle. This amounts to
saying that the skin friction decreases with increasing
cone angle. Laurmann [22] has found that the drag
coefficient ¢y, increases with decreasing cone angle.

From Table 6, it is clear that for a fixed r, |CH,|
increases with increasing cone angle. Kienappel {23]
(Fig. 11, p. 33) has shown graphically that the Stanton
number increases with increasing cone angle.

4.1.2. Effect of Mach number. Skin friction increases
slightly with increasing Mach number. In ref. [22], it is
mentioned that thereis a small but definite dependence
of drag coefficient cp, on free-stream Mach number (M )
over the entire range of Reynolds number. Figure 19 on
p-41 ofref.[23] also confirms this. We also note that the
magnitude of heat transfer increases with increasing
Mach number.

4.1.3. Effect of wall to stagnation temperature ratio.
Skin friction and the magnitude of the heat transfer
increase with increasing value of wall to stagnation
temperatureratio. Legge and Dankert[24] haveshown
that the drag coefficient ¢p increases with increasing
wall temperature.

4.1.4. Effect of blowing. Dueto blowing, skin friction,
and the magnitude of heat transfer are reduced. Mirels
and Ellinwood [25] have given viscous interaction



Table 2. Data scts and the corresponding surface values of inviscid velocity, temperature, pressure along with the values of the perturbation parameter ¢

First-order

Cone Free- Wall to First-order inviscid First-order
semi- stream Unit Stagnation stagnation inviscid flow tempera- inviscid
Data vertex Cone Mach Reynolds temperature temperature Injection flow velocity ture on pressure on Perturbation Source
set angle length  number number TS ratio parameter on cone cone cone parameter of
number o (cm) M, UR (K) Ty = TJT, Ve U, T. P, € data
1 5° 17.15 6.8 1.01 x 10° 580 0.68 0 0.989973 0.633746 x 107! 0275587 x 10~ 0.258716 x 1072  [18]
2 5° 7.5 20.8 1510 1560 0.19 0 0.992919 0.127634 x 10~!  0.166348 x 10~ 0.904076 x 10~* [19]
3 10° 8.5 6.8 7.2 x 10* 580 0.52 0 0.965250 0.875441 x 10~! 0.768841 x 10~ 0432756 x 102 [20]
4 10° 8.5 6.8 7.2 x 10% 580 0.52 0.5 0.965250 0.875441 x 107! 0768841 x 10™" 0.432756 x 1072
5 10° 8.39 69 3700 300 0.95 0 0.965909 0.873011 x 107! 0810450 x 107! 0238581 x 107! [213
6 10° 8.5 15.146 3050 1500 0.20 0 0.980385 0.301861 x 10~' 0355442 x 10~' 0.398166 x 10~!
7 10° 839 20 3050 1450 0.20 0 0.982183 0277520 x 107! 0.494120 x 10~ 0.584495 x 107! [19]
8 15° 104 6.5012. 7.2 x 10* 580 0.52 0 0951125 0.106100 091355 x 10~'  0.368806 x 1072
9 15° S 20 1690 1355 022 0 0.961380 0.440470 x 107! 0.596087 x 10~* 0.103599 [19]
Table 3. First-order boundary-layer wall gradients F’(0) and IT'(0) of radial velocity and temperature along with the skin-friction and heat-transfer coefficients
Date set er¥zeth
number F(0) 17'0) L orif2e el rRCH, = ——2
To—T.,
1 0.175726 x 10! 0.137334 x 10! 0.234141 0.605760 x 1073 —0.158300 x 107! -0.231267 x 1073
2 0.178865 x 10! 0.348513 x 10? 0.239763 0.216764 x 107! —0.844568 = 1071 —0.186404 x 107!
3 0957220 0.168671 x 10" 0.371721 0.160865 x 10~ —0.802787 x 107! —0.130787 x 102
4 0.227126 0.466494 0.882008 x 107! 0.381695 % 10~3 —0.222028 x 10~ —0.361719 x 1073
5 0.105164 x 10! —0.750396 0.341332 0.814353 x 10~2 0.298094 x 10~! 0.257744 x 107!
6 0.114410 x 10! 0.104435 x 10? 0.328220 0.130686 x 107! ~0.124660 —0.121473 x 107}
7 0.960305 0959960 x 10! 0.380667 0.222498 x 107! —0.145892 —0.210583 x 107!
8 0.868594 0.131857 x 10* 0.393403 0.145089 x 10~2 —0.900262 x 107! ~0.123870 x 1072
9 0.878752 0.545308 x 10! 0.397789 0.412107 x 107! —0.152833 —0.401034 x 107!
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Table4. Second-order boundary-layer wall gradients U’(0) and W'(0) of radial velocity and temperature showing the effects of displacement, wall slip, transverse curvature, and temperature jump at the

surface
U'(0) W(0)
Data
set Transverse Temperature Transverse Temperature
number Displacement curvature Wall slip jump Displacement curvature Wall slip jump

1 —0.887730 x 10? ~0.240659 x 10° —0.119987 x 10! —0.531361 0.322205 x 10! 0.172939 x 10° -0.224895 x 10* —0.144311 x 10?
2 —0.400131 x 10? —0.826077 x 10? —0.889029 —0.705874 x 10! 0.101261 x 102 0.103772 x 103 —0.287003 x 10? —-0.283038 x 10°
3 —0.302938 x 102 —0.252465 x 10? —0.150551 —0.107491 x 10!. 0481967 x 10! 0.338264 x 10? —0.127307 x 10! —0.177828 x 10?
4 —0.195736 x 10° —0.260548 x 102 0.391021 —0.768919 x 10~} 0.785526 x 10° 0.112319 x 103 —0.159034 x 10* —0.422207 x 10!
5 —0.375248 x 10? -0.332311 x 102 —0.214808 0.297441 0.109169 x 10! 0.418087 x 10? —0.156522 x 10! —0.489588 x 10!
6 —0.101440 x 10° ~0.223110 x 102 —0.227942 —0.559160 x 10} 0.115644 x 102 0.381581 x 10° —0.194514 x 10! —0.137300 x 10°
7 —0.942648 x 102 -0.122610 x 102 —0.106084 —0.465962 x 10} 0.105830 x 102 0.260280 x 10° —0.168939 x 10! —0.980609 x 10°
8 —0.215396 x 10? ~0.144587 x 10? —0.110464 —0.979549 0.501060 x 10 0.194931 x 10? —0.106838 x 10! —0.148394 x 102
9 —0.507640 x 10? —0.890342 x 10! —0.861353 x 107! —0.381608 x 10! 0.104991 x 10? 0.172958 x 10? —0.135932 x 10! —0.728412 x 10?

Table 5. Second-order boundary-layer quantities CT and CQ for skin-friction and heat-transfer coefficients showing the effects of displacement, transverse curvature, wall slip, and temperature jump at

the surface

Data
set
number

cQ

Displacement

Transverse
curvature

Wall slip

Temperature
Jjump

Displacement

Transverse
curvature

Wall slip

Temperature
jump

VOOV bW —

0.313004 x 10!
0.351507 x 10?
0.527343 x 10!
0.123101 x 10°
0.123878 x 10!
0.217963 x 10?
0.214485 x 102
0.478076 x 10!
0.150256 x 107

~0.136951 x 10°
—0.480655 x 102
—~0.263748 x 10*
—0.114715 x 10°
—0.315994 x 10°
~0.195010 x 102
~0.127679 x 10?
~0.166461 x 102
—~0.101310 x 10?

—0.682808
—0.517283
—0.157280
0.172160 x 10
—0.204260
—0.199233
—0.110469
—0.127176
—0.980200 x 10!

0.571859
0.111852 x 102
0.694350
0.164069
—0.191442
0.535772 x 10}
0381175 x 10!
- 0.580030
0.283086 x 10!

0.104620 x 10°
—0.128183 x 10
0.592360 x 102
0.518823 x 10?
—0.122057 x 10*
0.278171
0.552371
0.693093 % 10!
0.139846 x 10?

0.747733 x 10°
0.224154 x 10?
0.659220 x 10°
0.791444 x 10°
—0.334588 x 10°
0.123647 x 10?
0.989060 x 10!
0.404601 x 10?
0.801872 x 10!

0421491 x 10°
0.791475 x 10
0.560006 x 10!
—0.956118 x 10!
—0.109702 x 102
0.459858 x 10!
0366172 x 10!
0460739 x 10!
0.327000 x 10!

—0.606470 x 102
—0.305534 x 10?
-0.310212 x 10?
—0.287452 x 10%
—0.401295 x 10®
—0.240005 x 10?
—0.199350 x 10?
—0.273852 x 102
—0.194237 x 102

ssu0d dieys 15ed moy 198e]-L1epUnoq 13p10-puodsg
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Table 6. Comparison of the theoretical absolute values of heat-transfer coefficient with the experimental values of Stanton number

Approximate constant minimum

Source of the
experimental Stanton number

value of the
experimental Stanton number

Absolute value of

Data set

Remarks

CHyatr=1

number

The unit Reynolds number for the experimental result is 1.1 x 103
The unit Reynolds number for the experimental value is 3090
The unit Reynolds number for the experimental value is 1740

[18], p. 20, Fig. 5
[19], p. 28, Fig. 9
[20], p. 61, Fig. 6
[19], p. 29, Fig. 10
[19], p. 30, Fig. 11

0.015
0.023
0.04

0.75 x 1073
095 x 1073

0.231267 x 1073
0.186404 x 10~!
0.130787 x 1072
0.210583 x 107!
0.401034 x 107!

— A
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theory for slender axisymmetric bodies in hypersonic
flow. They have studied weak interaction ona cone and
have obtained the result that the drag reduces due to
blowing.

4.2. Second-order boundary-layer flow

(a) The combinedeflect of the second-order effects of
displacement, transverse curvature, slip and tempera-
ture jump results in the decrease in skin friction while
the wall pressure increases. Skin friction increases, in
general, due to temperature jump while velocity slip
reduces skin friction. Individual contribution of each
second-order effect on skin friction is recorded in
Table 5.

Inref. [25],it is mentioned that the surface slip tends
to reduce the magnitude of surface shear.

In ref. [15], it is mentioned that the skin friction
coefficient near the stagnation point on a convex wall
decreases due to curvature and displacement and the
opposite is true for the pressure coefficient at the wall.

(b) From the values of CQ in Table 5 it is clear that
the combined effect of wall slip and temperature jump
results in the decrease of the rate of heat transfer at the
surface. Due to transverse curvature and displacement,
the rate of heat transfer is increased in general. In the
case of a hot wall, the opposite happens.

Papenfuss [26] has shown that the heat transfer is
influenced by the geometry of the surface. Further, the
non-continuum effects of wall slip and temperature
jump are advantageous with regard to the second-
order heat transfer. Inref. [26], higher-order boundary-
layer effects at the stagnation point of blunt bodies in
laminar hypersonic flow have been studied. '

(c) The dominance of second-order effects on skin
friction and heat transfer coefficients reduces with
increasing cone angle. '

(d) The second-order effects become quite signific-
ant in the presence of blowing and at high Mach
numbers.

(e) From Table 5, it is clear that the transverse
curvature and displacement effects have greater
significancein comparison to wall slip and temperature
jump effects for the flow past cones.
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ECOULEMENT DE SECOND ORDRE A COUCHE LIMITE AUTOUR DE CONES EFFILES

Résumé—On étudieen détail des effets de second ordre d’épaisseur de déplacement, de courbure transversale,
de glissement pariétal et de saut de température pour un €écoulement a couche limite sur des cones effilés de
demi-angle 5°, 10° et 15°. H existe des solutions affines des équations adimensionnelles de premier et de second
ordre, et des solutions numériques des systémes résultants d’équations différentielles sont obtenus en utilisant
une technique de différences finies avec pas varilible. Les effets de second ordre sont calculés pour différentes
valeurs du nombre de Mach, de température de paroi et de paramétre d’'injection. Quelques résultats de
premier ordre pour le transfert thermique sont comparés a des résultats expérimentaux obtenus au DFVLR.

GRENZSCHICHTSTROMUNGEN ZWEITER ORDNUNG AN SPITZEN KEGELN

Zusammenfassung—Grenzschichteffekte zweiter Ordnung wie Verdringungsdicke, Querkrﬁmmung,
Wandschlupf und Temperatursprung wurden ausfiihrlich fir Strdmungen an spitzen Kegeln mit einem

halben Scheitelwinkel von 5°;

10° und 15° untersucht. Es existieren Ahnlichkeitslosungen der

dimensionslosen Grenﬁchichtglexchungen erster und zweiter Ordnung. Numerische Losungen der

resultierenden Systeme gewohnlicher Differentialgleichungen wurden nach der Methode der finiten

Differenzen mit variabler Schnttweite erhalten. Die Grenzschichteffekte zweiter Ordnung wurden fir

verschiedene Werte der Mach-Zahl, der Wandtemperatur und des Injektionsparameters berechnet. Einige

Ergebnisse erster Ordnung fiir den Warmeibergangskoeffizienten an der Wand wurden mit bei der DFVLR
verfiigbaren experimentellen Daten verglichen.
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TEYEHHE B [TOFTPAHUYHOM CJIOE V OCTPbIX KOHYCOB, PACCUYHTAHHOE C
YYETOM UJIEHOB BTOPOIC NOPAAKA

Annotauwa—Ilposeaeno NCTANLHOC MCCACAOBAHHE BAHAWNA YHETA HJICHOB BTOPOro NOpAaxa Ha
XaPAKTEPHCTHKH DOIPANMYHOTO CNOS — TOMIUIMHY BBLITECHEUMSA, NapaMETP IONEPe¥HOil KPHBINL),
CKOJIbXEHHE HA CIEHXE M CKa4YOK TEMNEpaTypsl — npi OBTEXAaHHH OCTPRIX KOHYCOB C yraami
noaypactsopa 5°, 10° 1 15°. B HacTosuee Bpemsa GespazmepHbie YpaBHEHHS [NTA NOTPAHHYHOIO €108,
PACCHHTLIBAEMOTO ¢ YYETOM MEPBOTO M BTOPOTO NMOpANKa, PELIAIOTCA ABTOMOIEIbHBIMH METOZAMM.
B paboTe monysenbl 44CIEHHBIE PEUIEHHS cHCTeM 06briHbIX AH(depeHIHaNbHbIX ypaBHEHHTT METOIOM
KOHEYHBIX pa3sHOCTel ¢ MEPEMEHHBIM pasMepoM 1uara. JpeKT BTOPOro HOpAAKa pacCHHTHIBAIOTCHA
IR PasNHYHbIX 3HaYeHMIl 4ncma Maxa, TemmepaTyp creMKH M napameTpos Baysa. Ilposeseo
CPaBHEHHE HEKOTOPHIX PE3YALTATOB MEPBOrO MOpAfKA MO TEMIOOOMEHY CTEHKH € HMEIOUUMCA
IKCMEPHMEHTAIBHBIMH AaNHBIMH.





